
CAF

A C++ framework for actor programming

User Manual
CAF version 0.14.5

Dominik Charousset

March 14, 2016

Contents

1 Introduction 1

1.1 Actor Model . 1

1.2 Terminology . 1

1.2.1 Actor Address . 1

1.2.2 Actor Handle . 2

1.2.3 Untyped Actors . 2

1.2.4 Typed Actor . 2

1.2.5 Spawning . 2

1.2.6 Monitoring . 2

1.2.7 Links . 2

2 First Steps 3

2.1 Features Overview . 3

2.2 Supported Compilers . 3

2.3 Supported Operating Systems . 3

2.4 Hello World Example . 4

3 Pattern Matching 5

3.1 Basics . 5

3.2 Atoms . 5

3.3 Advanced Match Cases . 7

3.4 Wildcards . 8

3.5 Projections . 8

3.6 Dynamically Building Messages . 9

4 Actors 10

4.1 Implicit self Pointer . 10

4.2 Interface . 11

5 Sending Messages 12

5.1 Replying to Messages . 12

5.2 Delaying Messages . 12

5.3 Forwarding Messages in Untyped Actors . 13

6 Receiving Messages 14

6.1 Class-based actors . 14

6.2 Nesting Receives Using become/unbecome . 16

6.3 Timeouts . 17

6.4 Skipping Messages . 18

7 Synchronous Communication 19

7.1 Additional Error Messages . 19

7.2 Receive Response Messages . 19

7.3 Synchronous Failures and Error Handlers . 20

8 Management & Error Detection 21

8.1 Links . 21

8.2 Monitors . 21

8.3 Error Codes . 22

8.4 Attach Cleanup Code to an Actor . 22

9 Spawning Actors 23

10 Message Priorities 24

11 Network Transparency 25

11.1 Publishing of Actors . 25

11.2 Connecting to Remote Actors . 26

12 Network IO 27

12.1 Spawning Brokers . 27

12.2 Broker Interface . 28

12.3 Broker-related Message Types . 29

13 Group Communication 30

13.1 Anonymous Groups . 30

13.2 Local Groups . 30

13.3 Remote Groups . 30

13.4 Spawning Actors in Groups . 31

14 Managing Groups of Workers 32

14.1 Dispatching Policies . 32

14.2 Example . 34

15 Platform-Independent Type System 35

15.1 User-Defined Data Types in Messages . 35

16 Blocking API 36

16.1 Receiving Messages . 36

16.2 Receiving Synchronous Responses . 38

16.3 Mixing Actors and Threads with Scoped Actors 38

17 Strongly Typed Actors 39

17.1 Spawning Typed Actors . 39

17.2 Class-based Typed Actors . 40

18 Messages 42

18.1 Class message . 42

18.2 Class message builder . 43

18.3 Extracting . 44

18.4 Extracting Command Line Options . 45

19 Common Pitfalls 46

19.1 Defining Patterns . 46

19.2 Event-Based API . 46

19.3 Synchronous Messages . 46

19.4 Sharing . 47

19.5 Constructors of Class-based Actors . 47

20 Appendix 48

20.1 Class option . 48

20.2 Using aout – A Concurrency-safe Wrapper for cout 49

20.3 Migration Guides . 50

20.3.1 0.8⇒ 0.9 . 50

20.3.2 0.9⇒ 0.10 (libcppa⇒ CAF) . 51

20.3.3 0.10⇒ 0.11 . 52

20.3.4 0.11⇒ 0.12 . 53

20.3.5 0.12⇒ 0.13 . 53

20.3.6 0.13⇒ 0.14 . 53

INTRODUCTION

1 Introduction

Before diving into the API of CAF, we would like to take the opportunity to discuss the concepts
behind CAF and to explain the terminology used in this manual.

1.1 Actor Model

The actor model describes concurrent entities—actors—that do not share state and communicate
only via message passing. By decoupling concurrently running software components via message
passing, the actor model avoids race conditions by design. Actors can create—“spawn”—new
actors and monitor each other to build fault-tolerant, hierarchical systems. Since message passing
is network transparent, the actor model applies to both concurrency and distribution.

When dealing with dozens of cores, mutexes, semaphores and other threading primitives are
the wrong level of abstraction. Implementing applications on top of those primitives has proven
challenging and error-prone. Additionally, mutex-based implementations can cause queueing and
unmindful access to (even distinct) data from separate threads in parallel can lead to false sharing:
both decreasing performance significantly, up to the point that an application actually runs slower
when adding more cores.

The actor model has gained momentum over the last decade due to its high level of abstraction
and its ability to make efficient use of multicore and multiprocessor machines. However, the
actor model has not yet been widely adopted in the native programming domain. With CAF,
we contribute a library for actor programming in C++ as open source software to ease native
development of concurrent as well as distributed systems. In this regard, CAF follows the C++
philosophy “building the highest abstraction possible without sacrificing performance”.

1.2 Terminology

You will find that CAF has not simply adopted exiting implementations based on the actor model
such as Erlang or the Akka library. Instead, CAF aims to provide a modern C++ API allowing for
type-safe as well as dynamically typed messaging. Hence, most aspects of our system are familiar
to developers having experience with other actor systems, but there are also slight differences in
terminology. However, neither CAF nor this manual require any foreknowledge.

1.2.1 Actor Address

In CAF, each actor has a (network-wide) unique logical address that can be used to identify and
monitor it. However, the address can not be used to send a message to an actor. This limitation
is due to the fact that the address does not contain any type information about the actor. Hence, it
would not be safe to send it any message, because the actor might use a strictly typed messaging
interface not accepting the given message.

1

INTRODUCTION

1.2.2 Actor Handle

An actor handle contains the address of an actor along with its type information. In order to
send an actor a message, one needs to have a handle to it – the address alone is not sufficient.
The distinction between handles and addresses – which is unique to CAF when comparing it to
other actor systems – is a consequence of the design decision to support both untyped and typed
actors.

1.2.3 Untyped Actors

An untyped actor does not constrain the type of messages it receives, i.e., a handle to an untyped
actor accepts any kind of message. That does of course not mean that untyped actors must
handle all possible types of messages. Choosing typed vs untyped actors is mostly a matter of
taste. Untyped actors allow developers to build prototypes faster, while typed actors allow the
compiler to fetch more errors at compile time.

1.2.4 Typed Actor

A typed actor defines its messaging interface, i.e., both input and output types, in its type. This
allows the compiler to check message types statically.

1.2.5 Spawning

“Spawning” an actor means to create and run a new actor.

1.2.6 Monitoring

A monitored actor sends a “down message” to all actors monitoring it as part of its termination.
This allows actors to supervise other actors and to take measures when one of the supervised
actors failed, i.e., terminated with a non-normal exit reason.

1.2.7 Links

A link is bidirectional connection between two actors. Each actor sends an “exit message” to all
of its links as part of its termination. Unlike down messages (cf. 1.2.6), the default behavior for
received exit messages causes the receiving actor to terminate for the same reason if the link
has failed, i.e., terminated with a non-normal exit reason. This allows developers to create a set
of actors with the guarantee that either all or no actors are alive. The default behavior can be
overridden, i.e., exit message can be “trapped”. When trapping exit messages, they are received
as any other ordinary message and can be handled by the actor.

2

FIRST STEPS

2 First Steps

To compile CAF, you will need CMake and a C++11 compiler. To get and compile the sources,
open a terminal (on Linux or Mac OS X) and type:

git clone https://github.com/actor-framework/actor-framework
cd actor-framework
./configure
make
make install [as root, optional]

It is recommended to run the unit tests as well:

make test

Please submit a bug report that includes (a) your compiler version, (b) your OS, and (c) the content
of the file build/Testing/Temporary/LastTest.log if an error occurs.

2.1 Features Overview

• Lightweight, fast and efficient actor implementations
• Network transparent messaging
• Error handling based on Erlang’s failure model
• Pattern matching for messages as internal DSL to ease development
• Thread-mapped actors for soft migration of existing applications
• Publish/subscribe group communication

2.2 Supported Compilers

• GCC ≥ 4.8
• Clang ≥ 3.2

2.3 Supported Operating Systems

• Linux
• Mac OS X
• Note for MS Windows: CAF relies on C++11 features such as unrestricted unions. We

will support this platform as soon as Microsoft’s compiler implements all required C++11
features. In the meantime, CAF can be used with MinGW.

3

FIRST STEPS

2.4 Hello World Example

#include <string>
#include <iostream>

#include "caf/all.hpp"

using namespace std;
using namespace caf;

behavior mirror(event_based_actor* self) {
// return the (initial) actor behavior
return {

// a handler for messages containing a single string
// that replies with a string
[=](const string& what) -> string {

// prints "Hello World!" via aout
// (thread-safe cout wrapper)
aout(self) << what << endl;
// terminates this actor
// (’become’ otherwise loops forever)
self->quit();
// reply "!dlroW olleH"
return string(what.rbegin(), what.rend());

}
};

}

void hello_world(event_based_actor* self, const actor& buddy) {
// send "Hello World!" to our buddy ...
self->sync_send(buddy, "Hello World!").then(

// ... wait for a response ...
[=](const string& what) {

// ... and print it
aout(self) << what << endl;

}
);

}

int main() {
// create a new actor that calls ’mirror()’
auto mirror_actor = spawn(mirror);
// create another actor that calls ’hello_world(mirror_actor)’;
spawn(hello_world, mirror_actor);
// wait until all other actors we have spawned are done
await_all_actors_done();
// run cleanup code before exiting main
shutdown();

}

4

PATTERN MATCHING

3 Pattern Matching

Actor programming implies a message passing paradigm. This means that defining message
handlers is a recurring task. The easiest and most natural way to specify such message handlers
is pattern matching. Unfortunately, C++ does not provide any pattern matching facilities. Hence,
we provide an internal domain-specific language to match incoming messages.

3.1 Basics

Actors can store a set of message callbacks using either behavior or message_handler. The
difference between the two is that the former stores an optional timeout. The most basic way to
define a pattern is to store a set of lambda expressions using one of the two container types.

behavior bhvr1{
[](int i) { /*...*/ },
[](int i, float f) { /*...*/ },
[](int a, int b, int c) { /*...*/ }

};

In our first example, bhvr1 models a pattern accepting messages that consist of either exactly
one int, or one int followed by a float, or three ints. Any other message is not matched and
will remain in the mailbox until it is consumed eventually. This caching mechanism allows actors
to ignore messages until a state change replaces its message handler. However, this can lead to
a memory leak if an actor receives messages it handles in no state. To allow actors to specify a
default message handlers for otherwise unmatched messages, CAF provides others.

behavior bhvr2{
[](int i) { /*...*/ },
[](int i, float f) { /*...*/ },
[](int a, int b, int c) { /*...*/ },
others >> [] { /*...*/ }

};

Please note the change in syntax for the default case. The lambda expression passed to the
constructor of behavior is prefixed by a ”match expression” and the operator >>.

3.2 Atoms

Assume an actor provides a mathematical service for integers. It takes two arguments, performs
a predefined operation and returns the result. It cannot determine an operation, such as multiply
or add, by receiving two operands. Thus, the operation must be encoded into the message. The
Erlang programming language introduced an approach to use non-numerical constants, so-called
atoms, which have an unambiguous, special-purpose type and do not have the runtime overhead
of string constants. Atoms are mapped to integer values at compile time in CAF. This mapping is
guaranteed to be collision-free and invertible, but limits atom literals to ten characters and prohibits
special characters. Legal characters are “_0-9A-Za-z” and the whitespace character. Atoms are
created using the constexpr function atom, as the following example illustrates.

5

PATTERN MATCHING

atom_value a1 = atom("add");
atom_value a2 = atom("multiply");
// ...

Warning: The compiler cannot enforce the restrictions at compile time, except for a length check.
The assertion atom("!?") != atom("?!") is not true, because each invalid character is
mapped to the whitespace character.

An atom_value alone does not help us statically annotate function handlers. To accomplish this,
CAF offers compile-time atom constants.

using add_atom = atom_constant<atom("add")>;
using multiply_atom = atom_constant<atom("multiply")>;

Using the constants, we can now define message passing interfaces in a convenient way.

behavior do_math{
[](add_atom, int a, int b) {

return a + b;
},
[](multiply_atom, int a, int b) {

return a * b;
}

};

Atom constants define a static member value that can be used on the caller side (see Section
5), e.g., send(math_actor, add_atom::value, 1, 2). Please note that the static value
member does not have the type atom_value, unlike std::integral_constant for example.

6

PATTERN MATCHING

3.3 Advanced Match Cases

Match cases are an advanced feature of CAF and allow you to match on values and to transform
data while matching. A match case begins with a call to the function on, which returns an inter-
mediate object providing operator>>. The right-hand side of the operator denotes a callback,
usually a lambda expression, that should be invoked if a tuple matches the types given to on,

When using the basic syntax, CAF generates the match case automatically. A verbose version of
the bhvr1 from 3.1 is shown below.

behavior verbose_bhvr1{
on<int>() >> [](int i) { /*...*/ },
on<int, float>() >> [](int i, float f) { /*...*/ },
on<int, int, int>() >> [](int a, int b, int c) { /*...*/ }

};

It is worth mentioning that passing the lambdas directly is more efficient, since it allows CAF to
select a special-purpose implementation. The function on can be used in two ways. Either with
template parameters only or with function parameters only. The latter version deduces all types
from its arguments and matches for both type and value. To match for any value of a given type,
the template val<T> can be used, as shown in the following example.

behavior bhvr3{
on(42) >> [](int i) { assert(i == 42); },
on("hello world") >> [] { /* ... */ },
on("print", val<std::string>) >> [](const std::string& what) {
// ...
}

};

Note: The given callback can have less arguments than the pattern. But it is only allowed to skip
arguments from left to right.

on<int, float, double>() >> [](double) { /*...*/ } // ok
on<int, float, double>() >> [](float, double) { /*...*/ } // ok
on<int, float, double>() >> [](int, float, double) { /*...*/ } // ok

on<int, float, double>() >> [](int i) { /*...*/ } // compiler error

To avoid redundancy when working with match expressions, arg_match can be used as last
argument to the function on. This causes the compiler to deduce all further types from the
signature of any given callback.

on<int, int>() >> [](int a, int b) { /*...*/ }
// is equal to:
on(arg_match) >> [](int a, int b) { /*...*/ }

Note that arg_match must be passed as last parameter. If all types should be deduced
from the callback signature, on_arg_match can be used, which is a faster alternative for
on(arg_match). However, on_arg_match is used implicitly whenever a callback is used with-
out preceding match expression.

7

PATTERN MATCHING

3.4 Wildcards

The type anything can be used as wildcard to match any number of any types. A pattern
created by on<anything>() or its alias others is useful to define a default case. For patterns
defined without template parameters, the constexpr value any_vals can be used as function
argument. The constant any_vals is of type anything and is nothing but syntactic sugar for
defining patterns.

on<int, anything>() >> [](int i) {
// tuple with int as first element

},
on(any_vals, arg_match) >> [](int i) {

// tuple with int as last element
// "on(any_vals, arg_match)" is equal to "on(anything{}, arg_match)"

},
others >> [] {

// everything else (default handler)
// "others" is equal to "on<anything>()" and "on(any_vals)"

}

3.5 Projections

Projections perform type conversions or extract data from a given input. If a callback expects an
integer but the received message contains a string, a projection can be used to perform a type
conversion on-the-fly. This conversion must not have side-effects and must not throw exceptions.
A failed projection is not an error, it simply indicates that a pattern is not matched. Let us have a
look at a simple example.

auto intproj = [](const string& str) -> option<int> {
char* endptr = nullptr;
int result = static_cast<int>(strtol(str.c_str(), &endptr, 10));
if (endptr != nullptr && *endptr == ’\0’) return result;
return {};

};
message_handler fun {

on(intproj) >> [](int i) {
// case 1: successfully converted a string

},
[](const string& str) {

// case 2: str is not an integer
}

};

The lambda intproj is a string⇒ int projection, but note that it does not return an integer.
It returns option<int>, because the projection is not guaranteed to always succeed. An empty
option indicates, that a value does not have a valid mapping to an integer. A pattern does not
match if a projection failed.

Note: Functors used as projection must take exactly one argument and must return a value.

8

PATTERN MATCHING

The types for the pattern are deduced from the functor’s signature. If the functor returns an
option<T>, then T is deduced.

3.6 Dynamically Building Messages

Usually, messages are created implicitly when sending messages but can also be created explicitly
using make_message. In both cases, types and number of elements are known at compile time.
To allow for fully dynamic message generation, CAF also offers a third option to create messages
by using a message_builder:

message_builder mb;
// prefix message with some atom
mb.append(strings_atom::value);
// fill message with some strings
std::vector<std::string> strings{/*...*/};
for (auto& str : strings) {

mb.append(str);
}
// create the message
message msg = mb.to_message();

9

ACTORS

4 Actors

CAF provides several actor implementations, each covering a particular use case. The class
local_actor is the base class for all implementations, except for (remote) proxy actors. Hence,
local_actor provides a common interface for actor operations like trapping exit messages or
finishing execution. The default actor implementation in CAF is event-based. Event-based actors
have a very small memory footprint and are thus very lightweight and scalable. Context-switching
actors are used for actors that make use of the blocking API (see Section 16), but do not need to
run in a separate thread. Context-switching and event-based actors are scheduled cooperatively
in a thread pool. Thread-mapped actors can be used to opt-out of this cooperative scheduling.

4.1 Implicit self Pointer

When using a function or functor to implement an actor, the first argument can be used to capture
a pointer to the actor itself. The type of this pointer is event_based_actor* per default and
blocking_actor* when using the blocking_api flag. When dealing with typed actors, the
types are typed_event_based_actor<...>* and typed_blocking_actor<...>*.

10

ACTORS

4.2 Interface

class local_actor;

Member functions

Observers

actor_addr address() Returns the address of this actor
bool trap_exit() Checks whether this actor traps exit messages

message& current_message()

Returns the currently processed message
Warning: Only set during callback invocation; calling
this function after forwarding the message or while not
in a callback is undefined behavior

actor_addr& current_sender()

Returns the sender of the current message
Warning: Only set during callback invocation; calling
this function after forwarding the message or while not
in a callback is undefined behavior

vector<group> joined_groups() Returns all subscribed groups

Modifiers

quit(uint32_t reason = normal) Finishes execution of this actor
void trap_exit(bool enabled) Enables or disables trapping of exit messages
void join(const group& g) Subscribes to group g
void leave(const group& g) Unsubscribes group g

void on_sync_failure(auto fun)

Sets a handler, i.e., a functor taking no argu-
ments, for unexpected synchronous response mes-
sages (default action is to kill the actor for reason
unhandled_sync_failure)

void monitor(actor whom) Unidirectionally monitors whom (see Section 8.2)
void demonitor(actor whom) Removes a monitor from whom

bool has_sync_failure_handler()
Checks whether this actor has a user-defined sync
failure handler

template <class F>
void set_exception_handler(F f)

Sets a custom handler for uncaught exceptions

void on_exit()
Can be overridden to add cleanup code that runs after
an actor finished execution, e.g., to break cycles

11

SENDING MESSAGES

5 Sending Messages

template<typename... Args>
void send(actor whom, Args&&... what);

Messages can be sent by using the member function send. The variadic template parameter
pack what... is converted to a message and then enqueued to the mailbox of whom.

void some_fun(event_based_actor* self) {
actor other = spawn(...);
self->send(other, 1, 2, 3);
// sending a message directly is also ok:
auto msg = make_message(1, 2, 3);
self->send(other, msg);

}

5.1 Replying to Messages

The return value of a message handler is used as response message. Actors can also use the
result of a sync_send to answer to a request, as shown below.

behavior client(event_based_actor* self, const actor& master) {
return {

[=](const string& request) {
return self->sync_send(master, request).then(

[=](const std::string& response) {
return response;

}
);

}
};

};

5.2 Delaying Messages

Messages can be delayed by using the function delayed_send.

using poll_atom = atom_constant<atom("poll")>;
behavior poller(event_based_actor* self) {

using std::chrono::seconds;
self->delayed_send(self, seconds(1), poll_atom::value);
return {

[](poll_atom) {
// poll a resource
// ...
// schedule next polling
self->delayed_send(self, seconds(1), poll_atom::value);

}
};

}

12

SENDING MESSAGES

5.3 Forwarding Messages in Untyped Actors

The member function forward_to forwards the last dequeued message to an other actor. For-
warding a synchronous message will also transfer responsibility for the request, i.e., the receiver
of the forwarded message can reply as usual and the original sender of the message will receive
the response. The following diagram illustrates forwarding of a synchronous message from actor
B to actor C.

A B C
--(sync_send)-->	
	--(forward_to)->
X	---\
	<--/
<-------------(reply)--------------	
X	
---\	
	handle
	response
<--/	
X

The forwarding is completely transparent to actor C, since it will see actor A as sender of the
message. However, actor A will see actor C as sender of the response message instead of actor
B and thus could recognize the forwarding by evaluating self->last_sender().

13

RECEIVING MESSAGES

6 Receiving Messages

The current behavior of an actor is its response to the next incoming message and includes (a)
sending messages to other actors, (b) creation of more actors, and (c) setting a new behavior.

An event-based actor, i.e., the default implementation in CAF, uses become to set its behavior.
The given behavior is then executed until it is replaced by another call to become or the actor
finishes execution.

6.1 Class-based actors

A class-based actor is a subtype of event_based_actor and must implement the pure virtual
member function make_behavior returning the initial behavior.

class printer : public event_based_actor {
behavior make_behavior() override {

return {
others >> [] {

cout << to_string(last_dequeued()) << endl;
}

};
}

};

14

RECEIVING MESSAGES

using pop_atom = atom_constant<atom("pop")>;
using push_atom = atom_constant<atom("push")>;

class fixed_stack : public event_based_actor {
public:

fixed_stack(size_t max) : max_size(max) {
full_.assign(

[=](push_atom, int) {
// discard

},
[=](pop_atom) -> message {

auto result = data.back();
data.pop_back();
become(filled_);
return make_message(ok_atom::value, result);

}
);
filled_.assign(

[=](push_atom, int what) {
data.push_back(what);
if (data.size() == max_size) become(full_);

},
[=](pop_atom) -> message {

auto result = data.back();
data.pop_back();
if (data.empty()) become(empty_);
return make_message(ok_atom::value, result);

}
);
empty_.assign(

[=](push_atom, int what) {
data.push_back(what);
become(filled_);

},
[=](pop_atom) {

return error_atom::value;
}

);
}

behavior make_behavior() override {
return empty_;

}

size_t max_size;
std::vector<int> data;
behavior full_;
behavior filled_;
behavior empty_;

};

15

RECEIVING MESSAGES

6.2 Nesting Receives Using become/unbecome

Since become does not block, an actor has to manipulate its behavior stack to achieve nested
receive operations. An actor can set a new behavior by calling become with the keep_behavior
policy to be able to return to its previous behavior later on by calling unbecome, as shown in the
example below.

// receives {int, float} sequences
behavior testee(event_based_actor* self) {
return {

[=](int value1) {
self->become (

// the keep_behavior policy stores the current behavior
// on the behavior stack to be able to return to this
// behavior later on by calling unbecome()
keep_behavior,
[=](float value2) {

cout << value1 << " => " << value2 << endl;
// restore previous behavior
self->unbecome();

}
);

}
};

}

An event-based actor finishes execution with normal exit reason if the behavior stack is empty
after calling unbecome. The default policy of become is discard_behavior that causes an
actor to override its current behavior. The policy flag must be the first argument of become.

Note: the message handling in CAF is consistent among all actor implementations: unmatched
messages are never implicitly discarded if no suitable handler was found. Hence, the order of
arrival is not important in the example above. This is unlike other event-based implementations of
the actor model such as Akka for instance.

16

RECEIVING MESSAGES

6.3 Timeouts

A behavior set by become is invoked whenever a new message arrives. If no message ever
arrives, the actor would wait forever. This might be desirable if the actor only provides a service
and should not do anything else. But often, we need to be able to recover if an expected message
does not arrive within a certain time period. The following examples illustrates the usage of after
to define a timeout.

behavior eager_actor(event_based_actor* self) {
return {

[](int i) { /* ... */ },
[](float i) { /* ... */ },
others >> [] { /* ... */ },
after(std::chrono::seconds(10)) >> [] {

aout(self) << "received nothing within 10 seconds..." << endl;
// ...

}
};

}

Callbacks given as timeout handler must have zero arguments. Any number of patterns can pre-
cede the timeout definition, but “after” must always be the final statement. Using a zero-duration
timeout causes the actor to scan its mailbox once and then invoke the timeout immediately if no
matching message was found.

CAF supports timeouts using minutes, seconds, milliseconds and microseconds. How-
ever, note that the precision depends on the operating system and your local work load. Thus,
you should not depend on a certain clock resolution.

17

RECEIVING MESSAGES

6.4 Skipping Messages

Unmatched messages are skipped automatically by CAF’s runtime system. This is true for all
actor implementations. To allow actors to skip messages manually, skip_message can be used.
This is in particular useful whenever an actor switches between behaviors, but wants to use a
default rule created by others to catch messages that are not handled by any of its behaviors.

The following example illustrates a simple server actor that dispatches requests to workers. After
receiving an ’idle’ message, it awaits a request that is then forwarded to the idle worker.
Afterwards, the server returns to its initial behavior, i.e., awaits the next ’idle’ message. The
server actor will exit for reason user_defined whenever it receives a message that is neither a
request, nor an idle message.

using idle_atom = atom_constant<atom("idle")>;
using request_atom = atom_constant<atom("request")>;

behavior server(event_based_actor* self) {
auto die = [=] { self->quit(exit_reason::user_defined); };
return {

[=](idle_atom) {
auto worker = last_sender();
self->become (

keep_behavior,
[=](request_atom) {

// forward request to idle worker
self->forward_to(worker);
// await next idle message
self->unbecome();

},
[=](idle_atom) {

return skip_message();
},
others >> die

);
},
[=](request_atom) {

return skip_message();
},
others >> die

};
}

18

SYNCHRONOUS COMMUNICATION

7 Synchronous Communication

CAF supports both asynchronous and synchronous communication. The latter is provided by the
member function sync_send.

template<typename... Args>
__unspecified__ sync_send(actor whom, Args&&... what);

A synchronous message is sent to the receiving actor’s mailbox like any other (asynchronous)
message. Only the response message is treated separately.

7.1 Additional Error Messages

struct sync_exited_msg {
actor_addr source;
uint32_t reason;

};

When using synchronous messaging, CAF’s runtime will send a sync_exited_msg message
if the receiver is not alive. This is in addition to exit and down messages caused by linking or
monitoring.

7.2 Receive Response Messages

When sending a synchronous message, the response handler can be passed by either using
then (event-based actors) or await (blocking actors).

void foo(event_based_actor* self, actor testee) {
// testee replies with a string to ’get’
self->sync_send(testee, get_atom::value).then(

[=](const std::string& str) {
// handle str

},
after(std::chrono::seconds(30)) >> [=]() {

// handle error
}

);
);

Similar to become, the then function modifies an actor’s behavior stack. However, it is used as
“one-shot handler” and automatically returns to the previous behavior afterwards.

19

SYNCHRONOUS COMMUNICATION

7.3 Synchronous Failures and Error Handlers

An unexpected response message, i.e., a message that is not handled by the “one-shot-handler”,
is considered as an error. The runtime will invoke the actor’s on_sync_failure, which kills the
actor by calling self->quit(exit_reason::unhandled_sync_failure) per default. The
error handler can be overridden by calling self->on_sync_failure(...) as shown below.

void foo(event_based_actor* self, actor testee) {
// set handler for unexpected messages
self->on_sync_failure([=] {

aout(self) << "received unexpected synchronous response: "
<< to_string(self->last_dequeued()) << endl;

});
// set response handler by using "then"
sync_send(testee, get_atom::value).then(
[=](const std::string& str) {

/* handle str */
}
// any other result will call the on_sync_failure handler

);
}

20

MANAGEMENT & ERROR DETECTION

8 Management & Error Detection

CAF adapts Erlang’s well-established fault propagation model. It allows to build actor subsystem
in which either all actors are alive or have collectively failed.

8.1 Links

Linked actors monitor each other. An actor sends an exit message to all of its links as part of its
termination. The default behavior for actors receiving such an exit message is to die for the same
reason, if the exit reason is non-normal. Actors can trap exit messages to handle them manually.

actor worker = ...;
// receive exit messages as regular messages
self->trap_exit(true);
// monitor spawned actor
self->link_to(worker);
// wait until worker exited
self->become (

[=](const exit_msg& e) {
if (e.reason == exit_reason::normal) {

// worker finished computation
else {

// worker died unexpectedly
}

}
);

8.2 Monitors

A monitor observes the lifetime of an actor. Monitored actors send a down message to all ob-
servers as part of their termination. Unlike exit messages, down messages are always treated
like any other ordinary message. An actor will receive one down message for each time it called
self->monitor(...), even if it adds a monitor to the same actor multiple times.

actor worker = ...;
// monitor spawned actor
self->monitor(worker);
// wait until worker exited
self->become (
[](const down_msg& d) {

if (d.reason == exit_reason::normal) {
// worker finished computation

} else {
// worker died unexpectedly

}
}

);

21

MANAGEMENT & ERROR DETECTION

8.3 Error Codes

All error codes are defined in the namespace caf::exit_reason. To obtain a string represen-
tation of an error code, use caf::exit_reason::as_string(uint32_t).

normal 1 Actor finished execution without error
unhandled_exception 2 Actor was killed due to an unhandled exception

unhandled_sync_failure 4
Actor was killed due to an unexpected syn-
chronous response message

unhandled_sync_timeout 5
Actor was killed, because no timeout handler
was set and a synchronous message timed out

unknown 6
Indicates that an actor has been exited and its
state is no longer known

out_of_workers 7
Indicates that an actor pool unexpectedly ran out
of workers

user_shutdown 16 Actor was killed by a user-generated event

kill 17
Unconditionally kills actors when using in an
exit_msg, even when trapping exits

remote_link_unreachable 257
Indicates that a remote actor became unreach-
able, e.g., due to connection error

user_defined 65536 Minimum value for user-defined exit codes

8.4 Attach Cleanup Code to an Actor

Actors can attach cleanup code to other actors. This code is executed immediately if the actor has
already exited.

using done_atom = atom_constant<atom("done")>;

behavior supervisor(event_based_actor* self, actor worker) {
actor observer = self;
// "monitor" spawned actor
worker->attach_functor([observer](std::uint32_t reason) {

// this callback is invoked from worker
anon_send(observer, done_atom::value);

});
// wait until worker exited
return {

[](done_atom) {
// ... worker terminated ...

}
};

}

Note: It is possible to attach code to remote actors, but the cleanup code will run on the local
machine.

22

SPAWNING ACTORS

9 Spawning Actors

Actors are created using the function spawn. The easiest way to implement actors is to use func-
tors, e.g., a free function or a lambda expression. The arguments to the functor are passed to
spawn as additional arguments. The function spawn also takes optional flags as template param-
eter. The flag detached causes spawn to assign a dedicated thread to the actor, i.e., to opt-out
of the cooperative scheduling. Convenience flags like linked or monitored automatically link
or monitor to the newly created actor. Naturally, these two flags are not available on “top-level”
spawns. Actors that make use of the blocking API—see Section 16—must be spawned using the
flag blocking_api. Flags are concatenated using the operator +, as shown in the examples
below.

#include "caf/all.hpp"
using namespace caf;

void my_actor1();
void my_actor2(event_based_actor*, int arg1, const std::string& arg2);
void ugly_duckling(blocking_actor*);

class my_actor3 : public event_based_actor { /* ... */ };
class my_actor4 : public event_based_actor {

public: my_actor4(int some_value) { /* ... */ }
/* ... */

};

// whenever we want to link to or monitor a spawned actor,
// we have to spawn it using the self pointer, otherwise
// we can use the free function ’spawn’ (top-level spawn)
void server(event_based_actor* self) {

// spawn functor-based actors
auto a0 = self->spawn(my_actor1);
auto a1 = self->spawn<linked>(my_actor2, 42, "hello actor");
auto a2 = self->spawn<monitored>([] { /* ... */ });
auto a3 = self->spawn([](int) { /* ... */ }, 42);
// spawn thread-mapped actors
auto a4 = self->spawn<detached>(my_actor1);
auto a5 = self->spawn<detached + linked>([] { /* ... */ });
auto a6 = self->spawn<detached>(my_actor2, 0, "zero");
// spawn class-based actors
auto a7 = self->spawn<my_actor3>();
auto a8 = self->spawn<my_actor4, monitored>(42);
// spawn and detach class-based actors
auto a9 = self->spawn<my_actor4, detached>(42);
// spawn actors that need access to the blocking API
auto aa = self->spawn<blocking_api>(ugly_duckling);
// compiler error: my_actor2 captures the implicit
// self pointer as event_based_actor* and thus cannot
// be spawned using the ‘blocking_api‘ flag
// --- auto ab = self->spawn<blocking_api>(my_actor2);

}

23

MESSAGE PRIORITIES

10 Message Priorities

By default, all messages have the same priority and actors ignore priority flags. Actors that should
evaluate priorities must be spawned using the priority_aware flag. This flag causes the actor
to use a priority-aware mailbox implementation. It is not possible to change this implementation
dynamically at runtime.

using a_atom = atom_constant<atom("a")>;
using b_atom = atom_constant<atom("b")>;

behavior testee(event_based_actor* self) {
// send ’b’ with normal priority
self->send(self, b_atom::value);
// send ’a’ with high priority
self->send(message_priority::high, self, a_atom::value);
// terminate after receiving a ’b’
return {

[=](b_atom) {
aout(self) << "received ’b’ => quit" << endl;
self->quit();

},
[=](a_atom) {

aout(self) << "received ’a’" << endl;
},

};
}

int main() {
// will print "received ’b’ => quit"
spawn(testee);
await_all_actors_done();
// will print "received ’a’" and then "received ’b’ => quit"
spawn<priority_aware>(testee);
await_all_actors_done();
shutdown();

}

24

NETWORK TRANSPARENCY

11 Network Transparency

All actor operations as well as sending messages are network transparent. Remote actors are
represented by actor proxies that forward all messages. All functions shown in this section can be
accessed by including the header "caf/io/all.hpp" and live in the namespace caf::io.

11.1 Publishing of Actors

uint16_t publish(actor whom, uint16_t port,
const char* addr = nullptr,
bool reuse_addr = false)

The function publish binds an actor to a given port. To choose the next high-level port available
for binding, one can specify port == 0 and retrieves the bound port as return value. The
return value is equal to port if port != 0. The function throws network_error if socket
related errors occur or bind_failure if the specified port is already in use. The optional addr
parameter can be used to listen only to the given address. Otherwise, the actor accepts all
incoming connections (INADDR_ANY). The flag reuse_addr controls the behavior when binding
an IP address to a port, with the same semantics as the BSD socket flag SO_REUSEADDR. For
example, if reuse_addr = false, binding two sockets to 0.0.0.0:42 and 10.0.0.1:42 will fail
with EADDRINUSE since 0.0.0.0 includes 10.0.0.1. With reuse_addr = true binding would
succeed because 10.0.0.1 and 0.0.0.0 are not literally equal addresses.

publish(self, 4242);
self->become (

[](ping_atom, int i) {
return std::make_tuple(pong_atom::value, i);

}
);

To close a socket, e.g., to allow other actors to be published at the port, the function unpublish

can be used. This function is called implicitly if a published actor terminates.

void unpublish(caf::actor whom, uint16_t port)

25

NETWORK TRANSPARENCY

11.2 Connecting to Remote Actors

actor remote_actor(const char* host, std::uint16_t port)

The function remote_actor connects to the actor at given host and port. A network_error is
thrown if the connection failed.

auto pong = remote_actor("localhost", 4242);
self->send(pong, ping_atom::value, 0);
self->become (

[=](pong_value, int i) {
if (i >= 10) {

self->quit();
return;

}
self->send(pong, ping_atom::value, i + 1);

}
);

26

NETWORK IO

12 Network IO

When communicating to other services in the network, sometimes low-level socket IO is inevitable.
For this reason, CAF provides brokers. A broker is an event-based actor running in the middleman
that multiplexes socket IO. It can maintain any number of acceptors and connections. Since the
broker runs in the middleman, implementations should be careful to consume as little time as
possible in message handlers. Any considerable amount work should outsourced by spawning
new actors (or maintaining worker actors). All functions shown in this section can be accessed by
including the header "caf/io/all.hpp" and live in the namespace caf::io.

12.1 Spawning Brokers

Brokers are spawned using the function spawn_io and always use functor-based implementa-
tions capturing the self pointer of type broker*. For convenience, spawn_io_server can be
used to spawn a new broker listening to a local port and spawn_io_client can be used to
spawn a new broker that connects to given host and port or uses existing IO streams.

template<spawn_options Os = no_spawn_options,
typename F = std::function<behavior (broker*)>,
typename... Ts>

actor spawn_io(F fun, Ts&&... args);

template<spawn_options Os = no_spawn_options,
typename F = std::function<behavior (broker*)>,
typename... Ts>

actor spawn_io_client(F fun,
input_stream_ptr in,
output_stream_ptr out,
Ts&&... args);

template<spawn_options Os = no_spawn_options,
typename F = std::function<behavior (broker*)>,
typename... Ts>

actor spawn_io_client(F fun, string host, uint16_t port, Ts&&... args);

template<spawn_options Os = no_spawn_options,
typename F = std::function<behavior (broker*)>,
typename... Ts>

actor spawn_io_server(F fun, uint16_t port, Ts&&... args);

27

NETWORK IO

12.2 Broker Interface

class broker;

Member Functions

void configure_read(
connection_handle hdl,
receive_policy::config config)

Modifies the receive policy for the connection
identified by hdl. This will cause the middle-
man to enqueue the next new_data_msg
according to the given config created
by receive_policy::exactly(x),
receive_policy::at_most(x), or
receive_policy::at_least(x) (with
x denoting the number of bytes)

void write(connection_handle hdl,
size_t num_bytes, const void* buf)

Writes data to the output buffer

void flush(connection_handle hdl) Sends the data from the output buffer
template <class F, class... Ts>
actor fork(F fun,
connection_handle hdl, Ts&&... args)

Spawns a new broker that takes ownership of
given connection

size_t num_connections() Returns the number of open connections
void close(connection_handle hdl) Closes a connection
void close(accept_handle hdl) Closes an acceptor

28

NETWORK IO

12.3 Broker-related Message Types

Brokers receive system messages directly from the middleman whenever an event on one of it
handles occurs.

struct new_connection_msg {
accept_handle source;
connection_handle handle;

};

Whenever a new incoming connection (identified by the handle field) has been accepted for one
of the broker’s accept handles, it will receive a new_connection_msg.

struct new_data_msg {
connection_handle handle;
std::vector<char> buf;

};

New incoming data is transmitted to the broker using messages of type new_data_msg. The raw
bytes can be accessed as buffer object of type std::vector<char>. The amount of data, i.e.,
how often this message is received, can be controlled using configure_read (see 12.2). It is
worth mentioning that the buffer is re-used whenever possible. This means, as long as the broker
does not create any new references to the message by copying it, the middleman will always use
only a single buffer per connection.

struct connection_closed_msg {
connection_handle handle;

};

struct acceptor_closed_msg {
accept_handle handle;

};

A connection_closed_msg or acceptor_closed_msg informs the broker that one of it
handles is no longer valid.

29

GROUP COMMUNICATION

13 Group Communication

CAF supports publish/subscribe-based group communication. Actors can join and leave groups
and send messages to groups.

std::string group_module = ...;
std::string group_id = ...;
auto grp = group::get(group_module, group_id);
self->join(grp);
self->send(grp, "test");
self->leave(grp);

13.1 Anonymous Groups

Groups created on-the-fly with group::anonymous() can be used to coordinate a set of work-
ers. Each call to group::anonymous() returns a new, unique group instance.

13.2 Local Groups

The "local" group module creates groups for in-process communication. For example, a group
for GUI related events could be identified by group::get("local", "GUI events"). The
group ID "GUI events" uniquely identifies a singleton group instance of the module "local".

13.3 Remote Groups

To deploy groups in a network, one host can act as group server by publishing its local groups at
any given port:

void publish_local_groups(std::uint16_t port, const char* addr)

By calling group::get("remote", "<group>@<host>:<port>"), other hosts are now
able to connect to a remotely running group. Please note that the group communication is no
longer available once the server disconnects. This implementation uses N-times unicast under-
neath. It is worth mentioning that user-implemented groups can be build on top of IP multicast or
overlay technologies such as Scribe to achieve better performance or reliability.

30

GROUP COMMUNICATION

13.4 Spawning Actors in Groups

The function spawn_in_group can be used to create actors as members of a group. The func-
tion causes the newly created actors to call join(...) immediately and before spawn_in_group
returns. The usage of spawn_in_group is equal to spawn, except for an additional group argu-
ment. The group handle is always the first argument, as shown in the examples below.

void fun1();
void fun2(int, float);
class my_actor1 : event_based_actor { /* ... */ };
class my_actor2 : event_based_actor {

// ...
my_actor2(const std::string& str) { /* ... */ }

};
// ...
auto grp = group::get(...);
auto a1 = spawn_in_group(grp, fun1);
auto a2 = spawn_in_group(grp, fun2, 1, 2.0f);
auto a3 = spawn_in_group<my_actor1>(grp);
auto a4 = spawn_in_group<my_actor2>(grp, "hello my_actor2!");

31

MANAGING GROUPS OF WORKERS

14 Managing Groups of Workers

When managing a set of workers, a central actor often dispatches requests to a set of workers.
For this purpose, the class actor_pool implements a lightweight abstraction for managing a set
of workers using a dispatching policy. Unlike groups, pools usually own their workers.

Pools are created using the static member function make, which takes either one argument (the
policy) or three (number of workers, factory function for workers, and dispatching policy). After
construction, one can add new workers via messages of the form (′S YS ′,′ PUT ′,worker), remove
workers with (′S YS ′,′ DELET E′,worker), and retrieve the set of workers as vector<actor>

via (′S YS ′,′GET ′).

For example, send(my_pool, sys_atom::value, put_atom::value, worker) adds
worker to my_pool.

An actor pool takes ownership of its workers. When forced to quit, it sends an exit messages to
all of its workers, forcing them to quit as well. The pool also monitors all of its workers.

Pools do not cache messages, but enqueue them directly in a workers mailbox. Consequently, a
terminating worker loses all unprocessed messages. For more advanced caching strategies, such
as reliable message delivery, users can implement their own dispatching policies.

14.1 Dispatching Policies

A dispatching policy is a functor with the following signature:

using uplock = upgrade_lock<detail::shared_spinlock>;
using policy = std::function<void (uplock& guard,

const actor_vec& workers,
mailbox_element_ptr& ptr,
execution_unit* host)>;

The argument guard is a shared lock that can be upgraded for unique access if the policy includes
a critical section. The second argument is a vector containing all workers managed by the pool.
The argument ptr contains the full message as received by the pool. Finally, host is the current
scheduler context that can be used to enqueue workers into the corresponding job queue.

The actor pool class comes with a set predefined policies, accessible via factory functions, for
convenience.

actor_pool::policy actor_pool::round_robin();

This policy forwards incoming requests in a round-robin manner to workers. There is no guarantee
that messages are consumed, i.e., work items are lost if the worker exits before processing all of
its messages.

actor_pool::policy actor_pool::broadcast();

This policy forwards each message to all workers. Synchronous messages to the pool will be
received by all workers, but the client will only recognize the first arriving response message—or

32

MANAGING GROUPS OF WORKERS

error—and discard subsequent messages. Note that this is not caused by the policy itself, but a
consequence of forwarding synchronous messages to more than one actor.

actor_pool::policy actor_pool::random();

This policy forwards incoming requests to one worker from the pool chosen uniformly at random.
Analogous to round_robin, this policy does not cache or redispatch messages.

using join = function<void (T&, message&)>;
using split = function<void (vector<pair<actor, message>>&, message&)>;
template <class T>
static policy split_join(join jf, split sf = ..., T init = T());

This policy models split/join or scatter/gather work flows, where a work item is split into as many
tasks as workers are available and then the individuals results are joined together before sending
the full result back to the client.

The join function is responsible for “glueing” all result messages together to create a single result.
The function is called with the result object (initialed using init) and the current result messages
from a worker.

The first argument of a split function is a mapping from actors (workers) to tasks (messages).
The second argument is the input message. The default split function is a broadcast dispatching,
sending each worker the original request.

33

MANAGING GROUPS OF WORKERS

14.2 Example

actor new_worker() {
return spawn([]() -> behavior {

return {
[](int x, int y) {

return x + y;
}

};
});

}

void broadcast_example() {
scoped_actor self;
// spawns a pool with 5 workers
auto pool5 = [] {

return actor_pool::make(5, new_worker, actor_pool::broadcast());
};
// spawns a pool with 5 pools with 5 workers each
auto w = actor_pool::make(5, pool5, actor_pool::broadcast());
// will be broadcasted to 25 workers
self->send(w, 1, 2);
std::vector<int> results;
int i = 0;
self->receive_for(i, 25)(

[&](int res) {
results.push_back(res);

}
);
assert(results.size(), 25);
assert(std::all_of(results.begin(), results.end(),

[](int res) { return res == 3; }));
// terminate pool(s) and all workers
self->send_exit(w, exit_reason::user_shutdown);

}

34

PLATFORM-INDEPENDENT TYPE SYSTEM

15 Platform-Independent Type System

CAF provides a fully network transparent communication between actors. Thus, CAF needs to
serialize and deserialize messages. Unfortunately, this is not possible using the RTTI system of
C++. CAF uses its own RTTI based on the class uniform_type_info, since it is not possible
to extend std::type_info.

Unlike std::type_info::name(), uniform_type_info::name() is guaranteed to return
the same name on all supported platforms. Furthermore, it allows to create an instance of a type
by name.

// creates a signed, 32 bit integer
uniform_value i = uniform_typeid<int>()->create();

You should rarely, if ever, need to use uniform_value or uniform_type_info. The type
uniform_value stores a type-erased pointer along with the associated uniform_type_info.
The sole purpose of this simple abstraction is to enable the pattern matching engine of CAF to
query the type information and then dispatch the value to a message handler. When using a
message_builder, each element is stored as a uniform_value.

15.1 User-Defined Data Types in Messages

All user-defined types must be explicitly “announced” so that CAF can (de)serialize them correctly,
as shown in the example below.

#include "caf/all.hpp"

struct foo { int a; int b; };

int main() {
caf::announce<foo>("foo", &foo::a, &foo::b);
// ... foo can now safely be used in messages ...

}

Without announcing foo, CAF is not able to (de)serialize instances of it. The function announce()
takes the class as template parameter. The first argument to the function always is the type name
followed by pointers to all members (or getter/setter pairs). This works for all primitive data types
and STL compliant containers. See the announce examples 1 – 4 of the standard distribution for
more details.

Obviously, there are limitations. You have to implement serialize/deserialize by yourself if your
class does implement an unsupported data structure. See announce_example_5.cpp in the
examples folder.

35

BLOCKING API

16 Blocking API

Besides event-based actors (the default implementation), CAF also provides context-switching
and thread-mapped actors that can make use of the blocking API. Those actor implementations
are intended to ease migration of existing applications or to implement actors that need to have
access to blocking receive primitives for other reasons.

Event-based actors differ in receiving messages from context-switching and thread-mapped ac-
tors: the former define their behavior as a message handler that is invoked whenever a new
messages arrives in the actor’s mailbox (by using become), whereas the latter use an explicit,
blocking receive function.

16.1 Receiving Messages

The function receive sequentially iterates over all elements in the mailbox beginning with the
first. It takes a message handler that is applied to the elements in the mailbox until an element
was matched by the handler. An actor calling receive is blocked until it successfully dequeued
a message from its mailbox or an optional timeout occurs.

self->receive (
on<int>() >> // ...

);

The code snippet above illustrates the use of receive. Note that the message handler passed
to receive is a temporary object at runtime. Hence, using receive inside a loop would cause
creation of a new handler on each iteration. CAF provides three predefined receive loops to
provide a more efficient but yet convenient way of defining receive loops.

36

BLOCKING API

//DON’T //DO

for (;;) {
receive (

// ...
);

}

receive_loop (
// ...

);

std::vector<int> results;
for (size_t i = 0; i < 10; ++i) {

receive (
on<int>() >> [&](int value) {

results.push_back(value);
}

);
}

std::vector<int> results;
size_t i = 0;
receive_for(i, 10) (

on<int>() >> [&](int value) {
results.push_back(value);

}
);

size_t received = 0;
do {

receive (
others >> [&]() {

++received;
}

);
} while (received < 10);

size_t received = 0;
do_receive (

others >> [&]() {
++received;

}
).until([&] { return received >= 10; });

The examples above illustrate the correct usage of the three loops receive_loop, receive_for
and do_receive(...).until. It is possible to nest receives and receive loops.

self->receive_loop (
on<int>() >> [&](int value1) {

self->receive (
on<float>() >> [&](float value2) {

cout << value1 << " => " << value2 << endl;
}

);
}

);

37

BLOCKING API

16.2 Receiving Synchronous Responses

Analogous to sync_send(...).then(...) for event-based actors, blocking actors can use
sync_send(...).await(...).

void foo(blocking_actor* self, actor testee) {
// testee replies with a string to ’get’
self->sync_send(testee, get_atom::value).await(

[&](const std::string& str) {
// handle str

},
after(std::chrono::seconds(30)) >> [&]() {

// handle error
}

);
}

16.3 Mixing Actors and Threads with Scoped Actors

The class scoped_actor offers a simple way of communicating with CAF actors from non-actor
contexts. It overloads operator-> to return a blocking_actor*. Hence, it behaves like the
implicit self pointer in functor-based actors, only that it ceases to exist at scope end.

void test() {
scoped_actor self;
// spawn some monitored actor
auto aut = self->spawn<monitored>(my_actor_impl);
self->sync_send(aut, "hi there").await(

... // handle response
);
// self will be destroyed automatically here; any
// actor monitoring it will receive down messages etc.

}

Note that scoped_actor throws an actor_exited exception when forced to quit for some rea-
son, e.g., via an exit_msg. Whenever a scoped_actor might end up receiving an exit_msg

(because it links itself to another actor for example), the caller either needs to handle the exception
or the actor needs to process exit_msg manually via self->trap_exit(true).

38

STRONGLY TYPED ACTORS

17 Strongly Typed Actors

Strongly typed actors provide a convenient way of defining type-safe messaging interfaces. Unlike
untyped actorsd, typed actors are not allowed to use guard expressions. When calling become in
a strongly typed actor, all message handlers from the typed interface must be set.

Typed actors use handles of type typed_actor<...> rather than actor, whereas the template
parameters hold the messaging interface. For example, an actor responding to two integers with a
dobule would use the type typed_actor<replies_to<int, int>::with<double>>. All
functions for message passing, linking and monitoring are overloaded to accept both types of
actors.

17.1 Spawning Typed Actors

Typed actors are spawned using the function spawn_typed. The argument to this function call
must be a match expression as shown in the example below, because the runtime of CAF needs
to evaluate the signature of each message handler.

auto p0 = spawn_typed(
[](int a, int b) {
return static_cast<double>(a) * b;

},
[](double a, double b) {

return std::make_tuple(a * b, a / b);
}

);
// assign to identical type
using full_type = typed_actor<

replies_to<int, int>::with<double>,
replies_to<double, double>::with<double, double>

>;
full_type p1 = p0;
// assign to subtype
using subtype1 = typed_actor<

replies_to<int, int>::with<double>
>;

subtype1 p2 = p0;
// assign to another subtype
using subtype2 = typed_actor<

replies_to<double, double>::with<double, double>
>;

subtype2 p3 = p0;

39

STRONGLY TYPED ACTORS

17.2 Class-based Typed Actors

Typed actors are spawned using the function spawn_typed and define their message passing
interface as list of replies_to<...>::with<...> statements. This interface is used in (1)
typed_event_based_actor<...>, which is the base class for typed actors, (2) the handle
type typed_actor<...>, and (3) typed_behavior<...>, i.e., the behavior definition for
typed actors. Since this is rather redundant, the actor handle provides definitions for the behavior
as well as the base class, as shown in the example below. It is worth mentioning that all typed
actors always use the event-based implementation, i.e., there is no typed actor implementation
providing a blocking API.

struct shutdown_request { };
struct plus_request { int a; int b; };
struct minus_request { int a; int b; };

typedef typed_actor<replies_to<plus_request>::with<int>,
replies_to<minus_request>::with<int>,
replies_to<shutdown_request>::with<void>>

calculator_type;

calculator_type::behavior_type
typed_calculator(calculator_type::pointer self) {

return {
[](const plus_request& pr) {

return pr.a + pr.b;
},
[](const minus_request& pr) {

return pr.a - pr.b;
},
[=](const shutdown_request&) {

self->quit();
}

};
}

class typed_calculator_class : public calculator_type::base {
protected: behavior_type make_behavior() override {

return {
[](const plus_request& pr) {

return pr.a + pr.b;
},
[](const minus_request& pr) {

return pr.a - pr.b;
},
[=](const shutdown_request&) {

quit();
}

};
}

};

40

STRONGLY TYPED ACTORS

void tester(event_based_actor* self, const calculator_type& testee) {
self->link_to(testee);
// will be invoked if we receive an unexpected response message
self->on_sync_failure([=] {

aout(self) << "AUT (actor under test) failed" << endl;
self->quit(exit_reason::user_shutdown);

});
// first test: 2 + 1 = 3
self->sync_send(testee, plus_request{2, 1}).then(

[=](int r1) {
assert(r1 == 3);
// second test: 2 - 1 = 1
self->sync_send(testee, minus_request{2, 1}).then(

[=](int r2) {
assert(r2 == 1);
// both tests succeeded
aout(self) << "AUT (actor under test) "

<< "seems to be ok"
<< endl;

self->send(testee, shutdown_request{});
}

);
}

);
}

int main() {
// announce custom message types
announce<shutdown_request>("shutdown_request");
announce<plus_request>("plus_request",

&plus_request::a, &plus_request::b);
announce<minus_request>("minus_request",

&minus_request::a, &minus_request::b);
// test function-based impl
spawn(tester, spawn_typed(typed_calculator));
await_all_actors_done();
// test class-based impl
spawn(tester, spawn_typed<typed_calculator_class>());
await_all_actors_done();
// done
shutdown();
return 0;

}

41

MESSAGES

18 Messages

Messages in CAF are type-erased, copy-on-write tuples. The actual message type itself is usu-
ally hidden, as actors use pattern matching to decompose messages automatically. However,
the classes message and message_builder allow more advanced usage scenarios than only
sending data from one actor to another.

18.1 Class message

Member functions

Observers

bool empty() Returns whether this message is empty
size_t size() Returns the size of this message
const void* at(size_t p) Returns a const pointer to the element at position p
template <class T>
const T& get_as(size_t p)

Returns a const ref. to the element at position p

template <class T>
bool match_element(size_t p)

Returns whether the element at position p has type T

template <class... Ts>
bool match_elements()

Returns whether this message has the types Ts...

message drop(size_t n) Creates a new message with all but the first n values
message drop_right(size_t n) Creates a new message with all but the last n values
message take(size_t n) Creates a new message from the first n values
message take_right(size_t n) Creates a new message from the last n values
message slice(size_t p, size_t n) Creates a new message from [p, p + n)
message slice(size_t p, size_t n) Creates a new message from [p, p + n)
message extract(message_handler) See §18.3
message extract_opts(...) See §18.4

Modifiers

optional<message>
apply(message_handler f)

Returns f(*this)

void* mutable_at(size_t p) Returns a pointer to the element at position p
template <class T>
T& get_as_mutable(size_t p)

Returns a reference to the element at position p

42

MESSAGES

18.2 Class message builder

Member functions

Constructors

() Creates an empty message builder
template <class Iter>
(Iter first, Iter last)

Adds all elements from range [first, last)

Observers

bool empty() Returns whether this message is empty
size_t size() Returns the size of this message
message to_message() Converts the buffer to an actual message object
template <class T> append(T val) Adds val to the buffer
template <class Iter>
append(Iter first, Iter last)

Adds all elements from range [first, last)

message extract(message_handler) See §18.3
message extract_opts(...) See §18.4

Modifiers

optional<message>
apply(message_handler f)

Returns f(*this)

message move_to_message()

Transfers ownership of its data to the new message
Warning: this function leaves the builder in an in-
valid state, i.e., calling any member function on it af-
terwards is undefined behavior

43

MESSAGES

18.3 Extracting

The member function message::extract removes matched elements from a message. x
Messages are filtered by repeatedly applying a message handler to the greatest remaining slice,
whereas slices are generated in the sequence [0, size), [0, size-1), ..., [1, size-1),
..., [size-1, size). Whenever a slice is matched, it is removed from the message and the
next slice starts at the same index on the reduced message.

For example:

auto msg = make_message(1, 2.f, 3.f, 4);
// remove float and integer pairs
auto msg2 = msg.extract({

[](float, float) { },
[](int, int) { }

});
assert(msg2 == make_message(1, 4));

Step-by-step explanation:

• Slice 1: (1, 2.f, 3.f, 4), no match

• Slice 2: (1, 2.f, 3.f), no match

• Slice 3: (1, 2.f), no match

• Slice 4: (1), no match

• Slice 5: (2.f, 3.f, 4), no match

• Slice 6: (2.f, 3.f), match; new message is (1, 4)

• Slice 7: (4), no match

Slice 7 is (4), i.e., does not contain the first element, because the match on slice 6 occurred
at index position 1. The function extract iterates a message only once, from left to right. The
returned message contains the remaining, i.e., unmatched, elements.

44

MESSAGES

18.4 Extracting Command Line Options

The class message also contains a convenience interface to extract for parsing command line
options: the member function extract_opts.

int main(int argc, char** argv) {
uint16_t port;
string host = "localhost";
auto res = message_builder(argv + 1, argv + argc).extract_opts({

{"port,p", "set port", port},
{"host,H", "set host (default: localhost)", host},
{"verbose,v", "enable verbose mode"}

});
if (! res.error.empty()) {

// read invalid CLI arguments
cerr << res.error << endl;
return 1;

}
if (res.opts.count("help") > 0) {

// CLI arguments contained "-h", "--help", or "-?" (builtin);
cout << res.helptext << endl;
return 0;

}
if (! res.remainder.empty()) {

// res.remainder stors all extra arguments that weren’t consumed
}
if (res.opts.count("verbose") > 0) {

// enable verbose mode
}
// ...

}

/*
Output of ./program_name -h:

Allowed options:
-p [--port] arg : set port
-H [--host] arg : set host (default: localhost)
-v [--verbose] : enable verbose mode

*/

45

COMMON PITFALLS

19 Common Pitfalls

19.1 Defining Patterns

• C++ evaluates comma-separated expressions from left-to-right, using only the last element
as return type of the whole expression. This means that message handlers and behaviors
must not be initialized like this:

message_handler wrong = (
[](int i) { /*...*/ },
[](float f) { /*...*/ }

);

The correct way to initialize message handlers and behaviors is to either use the constructor
or the member function assign:

message_handler ok1{
[](int i) { /*...*/ },
[](float f) { /*...*/ }

};

message_handler ok2;
// some place later
ok2.assign(

[](int i) { /*...*/ },
[](float f) { /*...*/ }

);

19.2 Event-Based API

• The functions become and handle_response do not block, i.e., always return imme-
diately. Thus, one should always capture by value in lambda expressions, because all
references on the stack will cause undefined behavior if the lambda expression is executed.

19.3 Synchronous Messages

• A handle returned by sync_send represents exactly one response message. Therefore, it
is not possible to receive more than one response message.

• The handle returned by sync_send is bound to the calling actor. It is not possible to transfer
a handle to a response to another actor.

46

COMMON PITFALLS

19.4 Sharing

• It is strongly recommended to not share states between actors. In particular, no actor shall
ever access member variables or member functions of another actor. Accessing shared
memory segments concurrently can cause undefined behavior that is incredibly hard to
find and debug. However, sharing data between actors is fine, as long as the data is
immutable and its lifetime is guaranteed to outlive all actors. The simplest way to meet
the lifetime guarantee is by storing the data in smart pointers such as std::shared_ptr.
Nevertheless, the recommended way of sharing informations is message passing. Sending
the same message to multiple actors does not result in copying the data several times.

19.5 Constructors of Class-based Actors

• You should not try to send or receive messages in a constructor or destructor, because the
actor is not fully initialized at this point.

47

APPENDIX

20 Appendix

20.1 Class option

Defined in header "caf/option.hpp".

template<typename T>
class option;

Represents an optional value.

Member types
Member type Definition
type T

Member Functions
option() Constructs an empty option
option(T value) Initializes this with value
option(const option&)
option(option&&)

Copy/move construction

option& operator=(const option&)
option& operator=(option&&)

Copy/move assignment

Observers

bool valid()
explicit operator bool()

Returns true if this has a value

bool empty()
bool operator!()

Returns true if this does not has a value

const T& get()
const T& operator*()

Access stored value

const T& get_or_else(const T& x) Returns get() if valid, x otherwise

Modifiers

T& get()
T& operator*()

Access stored value

48

APPENDIX

20.2 Using aout – A Concurrency-safe Wrapper for cout

When using cout from multiple actors, output often appears interleaved. Moreover, using cout

from multiple actors – and thus from multiple threads – in parallel should be avoided regardless,
since the standard does not guarantee a thread-safe implementation.

By replacing std::cout with caf::aout, actors can achieve a concurrency-safe text output.
The header caf/all.hpp also defines overloads for std::endl and std::flush for aout,
but does not support the full range of ostream operations (yet). Each write operation to aout
sends a message to a ‘hidden’ actor (keep in mind, sending messages from actor constructors is
not safe). This actor only prints lines, unless output is forced using flush. The example below
illustrates printing of lines of text from multiple actors (in random order).

#include <chrono>
#include <cstdlib>
#include <iostream>

#include "caf/all.hpp"

using namespace caf;
using std::endl;

using done_atom = atom_constant<atom("done")>;

int main() {
std::srand(std::time(0));
for (int i = 1; i <= 50; ++i) {

spawn<blocking_api>([i](blocking_actor* self) {
aout(self) << "Hi there! This is actor nr. "

<< i << "!" << endl;
std::chrono::milliseconds tout{std::rand() % 1000};
self->delayed_send(self, tout, done_atom::value);
self->receive(
[i, self](done_atom) {

aout(self) << "Actor nr. "
<< i << " says goodbye!" << endl;

}
);

});
}
// wait until all other actors we’ve spawned are done
await_all_actors_done();
shutdown();

}

49

APPENDIX

20.3 Migration Guides

The guides in this section document all possibly breaking changes in the library for that last
versions of CAF.

20.3.1 0.8⇒ 0.9

Version 0.9 included a lot of changes and improvements in its implementation, but it also made
breaking changes to the API.

self has been removed

This is the biggest library change since the initial release. The major problem with this keyword-
like identifier is that it must have a single type as it’s implemented as a thread-local variable. Since
there are so many different kinds of actors (event-based or blocking, untyped or typed), self
needs to perform type erasure at some point, rendering it ultimately useless. Instead of a thread-
local pointer, you can now use the first argument in functor-based actors to ”catch” the self pointer
with proper type information.

actor_ptr has been replaced

CAF now distinguishes between handles to actors, i.e., typed_actor<...> or simply actor,
and addresses of actors, i.e., actor_addr. The reason for this change is that each actor has
a logical, (network-wide) unique address, which is used by the networking layer of CAF. Fur-
thermore, for monitoring or linking, the address is all you need. However, the address is not
sufficient for sending messages, because it doesn’t have any type information. The function
last_sender() now returns the address of the sender. This means that previously valid code
such as send(last_sender(), ...) will cause a compiler error. However, the recommended
way of replying to messages is to return the result from the message handler.

The API for typed actors is now similar to the API for untyped actors

The APIs of typed and untyped actors have been harmonized. Typed actors can now be published
in the network and also use all operations untyped actors can.

50

APPENDIX

20.3.2 0.9⇒ 0.10 (libcppa⇒ CAF)

The first release under the new name CAF is an overhaul of the entire library. Some classes
have been renamed or relocated, others have been removed. The purpose of this refactoring
was to make the library easier to grasp and to make its API more consistent. All classes now
live in the namespace caf and all headers have the top level folder “caf” instead of “cppa”. For
example, #include "cppa/actor.hpp" becomes #include "caf/actor.hpp". Further,
the convenience header to get all parts of the user API is now "caf/all.hpp". The networking
has been separated from the core library. To get the networking components, simply include
"caf/io/all.hpp" and use the namespace caf::io, e.g., caf::io::remote_actor.

Version 0.10 still includes the header cppa/cppa.hpp to make the transition process for users
easier and to not break existing code right away. The header defines the namespace cppa

as an alias for caf. Furthermore, it provides implementations or type aliases for renamed or
removed classes such as cow_tuple. You won’t get any warning about deprecated headers with
0.10. However, we will add this warnings in the next library version and remove deprecated code
eventually.

Even when using the backwards compatibility header, the new library has breaking changes. For
instance, guard expressions have been removed entirely. The reasoning behind this decision is
that we already have projections to modify the outcome of a match. Guard expressions add little
expressive power to the library but a whole lot of code that is hard to maintain in the long run due
to its complexity. Using projections to not only perform type conversions but also to restrict values
is the more natural choice.

The following table summarizes the changes made to the API.

51

APPENDIX

Change Explanation

any_tuple => message

This type is only being used to pass a message
from one actor to another. Hence, message is
the logical name.

partial_function =>

message_handler

Technically, it still is a partial function, but
wanted to emphasize its use case in the library.

cow_tuple => X

We want to provide a streamlined, simple API.
Shipping a full tuple abstraction with the library
does not fit into this philosophy. The removal
of cow_tuple implies the removal of related
functions such as tuple_cast.

cow_ptr => X

This pointer class is an implementation detail
of message and should not live in the global
namespace in the first place. It also had the
wrong name, because it is intrusive.

X => message_builder

This new class can be used to create mes-
sages dynamically. For example, the content
of a vector can be used to create a message
using a series of append calls.

accept_handle,
connection_handle,
publish, remote_actor,
max_msg_size, typed_publish,
typed_remote_actor,
publish_local_groups,
new_connection_msg,
new_data_msg,
connection_closed_msg,
acceptor_closed_msg

These classes concern I/O functionality and
have thus been moved to caf::io.

20.3.3 0.10⇒ 0.11

Version 0.11 introduced new, optional components. The core library itself, however, mainly re-
ceived optimizations and bugfixes with one exception: the member function on_exit is no longer
virtual. You can still provide it to define a custom exit handler, but you must not use override.

52

APPENDIX

20.3.4 0.11⇒ 0.12

Version 0.12 removed two features:

• Type names are no longer demangled automatically. Hence, users must explicitly pass the
type name as first argument when using announce, i.e., announce<my_class>(...)
becomes announce<my_class>("my_class", ...).

• Synchronous send blocks no longer support continue_with. This feature has been
removed without substitution.

20.3.5 0.12⇒ 0.13

This release removes the (since 0.9 deprecated) cppa headers and deprecates all *_send_tuple
versions (simply use the function without _tuple suffix). local_actor::on_exit once again
became virtual.

In case you were using the old cppa::options_description API, you can migrate to the new
API based on extract (cf. 18.4).

Most importantly, version 0.13 slightly changes last_dequeued and last_sender. Both func-
tions will now cause undefined behavior (dereferencing a nullptr) instead of returning dummy
values when accessed from outside a callback or after forwarding the current message. Besides,
these function names were not a good choice in the first place, since “last” implies accessing data
received in the past. As a result, both functions are now deprecated. Their replacements are
named current_message and current_sender (cf. Section 4.2).

20.3.6 0.13⇒ 0.14

The function timed_sync_send has been removed. It offered an alternative way of defining
message handlers, which is inconsistent with the rest of the API.

The policy classes broadcast, random, and round_robin in actor_pool were removed and
replaced by factory functions using the same name.

53

	Introduction
	Actor Model
	Terminology
	Actor Address
	Actor Handle
	Untyped Actors
	Typed Actor
	Spawning
	Monitoring
	Links

	First Steps
	Features Overview
	Supported Compilers
	Supported Operating Systems
	Hello World Example

	Pattern Matching
	Basics
	Atoms
	Advanced Match Cases
	Wildcards
	Projections
	Dynamically Building Messages

	Actors
	Implicit self Pointer
	Interface

	Sending Messages
	Replying to Messages
	Delaying Messages
	Forwarding Messages in Untyped Actors

	Receiving Messages
	Class-based actors
	Nesting Receives Using become/unbecome
	Timeouts
	Skipping Messages

	Synchronous Communication
	Additional Error Messages
	Receive Response Messages
	Synchronous Failures and Error Handlers

	Management & Error Detection
	Links
	Monitors
	Error Codes
	Attach Cleanup Code to an Actor

	Spawning Actors
	Message Priorities
	Network Transparency
	Publishing of Actors
	Connecting to Remote Actors

	Network IO
	Spawning Brokers
	Broker Interface
	Broker-related Message Types

	Group Communication
	Anonymous Groups
	Local Groups
	Remote Groups
	Spawning Actors in Groups

	Managing Groups of Workers
	Dispatching Policies
	Example

	Platform-Independent Type System
	User-Defined Data Types in Messages

	Blocking API
	Receiving Messages
	Receiving Synchronous Responses
	Mixing Actors and Threads with Scoped Actors

	Strongly Typed Actors
	Spawning Typed Actors
	Class-based Typed Actors

	Messages
	Class message
	Class message_builder
	Extracting
	Extracting Command Line Options

	Common Pitfalls
	Defining Patterns
	Event-Based API
	Synchronous Messages
	Sharing
	Constructors of Class-based Actors

	Appendix
	Class option
	Using aout – A Concurrency-safe Wrapper for cout
	Migration Guides
	0.8 0.9
	0.9 0.10 (libcppa CAF)
	0.10 0.11
	0.11 0.12
	0.12 0.13
	0.13 0.14

